Titleα-Synuclein aggregation intermediates form fibril polymorphs with distinct prion-like properties.
Publication TypeJournal Article
Year of Publication2022
AuthorsMehra S, Ahlawat S, Kumar H, Datta D, Navalkar A, Singh N, Patel K, Gadhe L, Kadu P, Kumar R, Jha NN, Sakunthala A, Sawner AS, Padinhateeri R, Udgaonkar JB, Agarwal V, Maji SK
JournalJ Mol Biol
Pagination167761
Date Published2022 Jul 27
ISSN1089-8638
Abstract

α-Synuclein (α-Syn) amyloids in synucleinopathies are suggested to be structurally and functionally diverse, reminiscent of prion-like strains. But how the aggregation of the same precursor protein results in the formation of fibril polymorphs remains elusive. Here, we demonstrate the structure-function relationship of two polymorphs, pre-matured fibrils (PMFs) and helix-matured fibrils (HMFs), based on α-Syn aggregation intermediates. These polymorphs display the structural differences as demonstrated by solid-state NMR and mass spectrometry studies and also possess different cellular activities such as seeding, internalization, and cell-to-cell transfer of aggregates. HMFs with a compact core structure exhibit low seeding potency but readily internalize and transfer from one cell to another. The less structured PMFs lack transcellular transfer ability but induce abundant α-Syn pathology and trigger the formation of aggresomes in cells. Overall, the study highlights that the conformational heterogeneity in the aggregation pathway may lead to fibril polymorphs with distinct prion-like behavior.

DOI10.1016/j.jmb.2022.167761
Alternate JournalJ Mol Biol
PubMed ID35907572