TitleEnvironmental heterogeneity modulates the effect of plant diversity on the spatial variability of grassland biomass.
Publication TypeJournal Article
Year of Publication2023
AuthorsDaleo P, Alberti J, Chaneton EJ, Iribarne O, Tognetti PM, Bakker JD, Borer ET, Bruschetti M, MacDougall AS, Pascual J, Sankaran M, Seabloom EW, Wang S, Bagchi S, Brudvig LA, Catford JA, Dickman CR, Dickson TL, Donohue I, Eisenhauer N, Gruner DS, Haider S, Jentsch A, Knops JMH, Lekberg Y, McCulley RL, Moore JL, Mortensen B, Ohlert T, Pärtel M, Peri PL, Power SA, Risch AC, Rocca C, Smith NG, Stevens C, Tamme R, Veen GFCiska, Wilfahrt PA, Hautier Y
JournalNat Commun
Volume14
Issue1
Pagination1809
Date Published2023 Mar 31
ISSN2041-1723
KeywordsBiodiversity, Biomass, Ecosystem, Grassland, Plants, Reproducibility of Results
Abstract

Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions.

DOI10.1038/s41467-023-37395-y
Alternate JournalNat Commun
PubMed ID37002217
PubMed Central IDPMC10066197