• Artymiuk, P.J., Grindley, H.M., Park, J.E., Rice, D.W. & Willett, P. (1992). 3-dimensional structural resemblance between leucine aminopeptidase and carboxypeptidase-A revealed by graph theoretical techniques. FEBS Letts. 303, 48-52.
  • Alexandrov, N.N. & Go, N. (1994). Biological meaning, statistical significance, and classification of local spatial similarities in non-homologous proteins. Prot. Sci., 3, 866-875.
  • Bowie, J.U., Luthy, R. and Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science, 253, 164-170.
  • Castillo, R.M., Mizuguchi, K., Dhanaraj, V., Albert, A., Blundell, T.L. and Murzin, A.G. (1999). A six-stranded double-psi beta barrel is shared by several protein superfamilies. Structure Fold. Des. 7, 227-236.
  • Chothia, C. (1984). Principles that determine the structure of proteins. Ann. Rev. Biochem., 53, 537-572.
  • Eddy, S.R. (1998). Profile Hidden Markov models. Bioinformatics, 14, 755-763.
  • Fischer, D., Eisenberg, D. (1999). Predicting structures for genome proteins. Curr. Opin. Struct. Biol., 9, 208-211.
  • Gerstein, M. (1998). How representative are the known structures of the proteins in a complete genome? A comprehensive structural census. Fold. & Des., 3, 497-512.
  • Go, M. (1981). Correlation of DNA exonic regions with protein structural units in hemoglobin. Nature, 291, 90-92.
  • Grandori, R. (1998). Systematic fold recognition analysis of the sequences encoded by the genome of Mycoplasma pneumoniae. Prot. Engng., 11, 1129-1135.
  • Hargbo, J. & Elofsson, A. (1999). A study of Hidden Markov models that use predicted secondary structures for fold recognition. Proteins, 36, 68-87.
  • Holm, L. & Sander, C. (1998). Touring fold space with Dali/FSSP. Nucl. Acids Res., 26, 316-319.
  • Holm, L., Ouzounis, C., Sander, C., Tuparev, G. & Vriend, G. (1992). A database of protein-structure families with common folding motifs. Prot. Sci., 1, 1691-1698.
  • Johnson, M.S., Overington, J.P. & Blundell, T.L. (1993). A structural basis for sequence comparisons: an evaluation of scoring methodologies. J. Mol. Biol., 233, 716-738.
  • Jones, D.T. (1999). GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J. Mol. Biol., 287, 797-815.
  • Jones, D.T., Taylor, W.R. & Thornton, J.M. (1992). A new approach to protein fold recognition. Nature, 358, 86-89.
  • Marcotte, E.M., Pellegrini, M., Ng, H.L., Rice, D.W., Yeates, T.O. & Eisenberg, D. (1999). Detecting protein function and protein-protein interactions from genome sequences. Science , 285, 751-753.
  • Martin, A.C., Orengo, C.A., Hutchinson, E.G., Jones, S., Karmirantzou, M., Laskowski, R.A., Mitchell, J.B., Taroni, C. & Thornton, J.M. (1998). Protein folds and functions. Structure, 6, 875-884.
  • Matthews, B.W. & Rossmann, M.G. (1975). Comparison of protein structures. Methods Enzymol., 115, 397-420.
  • Mitchell, E.M., Artymiuik, P.J., Rice, D.W., & Willett, P. (1989). Use of techniques derived from graph theory to compare secondary structure motifs in proteins. J. Mol. Biol., 212, 151-166.
  • Murthy, M.R.N. (1984). A fast method of comparing protein structures. FEBS Letts., 168, 97-102.
  • Murzin, A.G. & Chothia, C. (1992). Protein architecture: new superfamilies. Curr. Opin. Struc. Biol., 2, 895-903.
  • Murzin, A.G., Brenner, S.E., Hubbard, T. & Chothia, C. (1995). SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol., 247, 536-540.
  • Orengo, C.A. & Thornton, J.M. (1993). Alpha-fold plus beta-fold revisited - some favored motifs. Structure, 1, 105-120.
  • Orengo, C.A., Jones, D.T. & Thornton, J.M. (1994). Protein superfamilies and domain superfolds. Nature, 372, 631-634.
  • Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells, M.B. & Thornton, J.M. (1997). CATH - a hierarchic classification of protein domain structures. Structure, 5, 1093-1108.
  • Orengo, C.A., Pearl, F.M., Bray, J.E., Todd, A.E., Martin, A.C., Lo Conte, L. and Thornton, J.M. (1999). The CATH Database provides insights into protein structure/function relationships. Nucl. Acids Res., 27, 275-279.
  • Overington, J.P., Johnson, M.S., Sali, A. & Blundell, T.L. (1990). Tertiary structural constraints on protein evolutionary diversity: Templates, key residues and structure prediction. Proc. R. Soc. (London), B241, 132-145.
  • Overington, J.P., Zhu, Z.-Y., Sali, A., Johnson, M.S., Sowdhamini, R., Louie, G.V. & Blundell, T.L. (1993). Molecular recognition in protein families: A database of aligned three-dimensional structures of related proteins. Biochem. Soc. Trans., 21, 597-604.
  • Park J, Karplus K, Barrett C, Hughey R, Haussler D, Hubbard T, Chothia C. (1998). Sequence comparisons using multiple sequences detect three times as many remote homologues as pairwise methods. J Mol .Biol. 284, 1201-10.
  • Richardson, J.S. (1981). The anatomy and taxonomy of protein structure. Adv. Prot. Chem., 34, 167-339.
  • Rossmann, M.G. & Argos, P. (1977). The taxonomy of protein structure. J. Mol. Biol., 109, 99-129.
  • Rossmann, M.G., Moras, D. & Olsen, K.W. (1974). Chemical and biological evolution of a nucleotide-binding protein. Nature, 250, 194-199.
  • Rufino, S.D. & Blundell, T.L. (1994). Structure-based identification and clustering of protein families and superfamilies. J. Computer-Aided Design, 8, 5-27.
  • Russell, R.B., Sasieni, P.D., Sternberg, M.J.E. (1998). Supersites within superfolds. Binding site similarity in the absence of homology. J. Mol. Biol., 282, 903-918.
  • Rychlewski, L., Zhang, B., Godzik, A. (1999). Functional insights from structural predictions: analysis of the Escherichia coli genome. Prot. Sci., 8, 614-624.
  • Sali, A & Blundell, T.L. (1993). Comparative protein modelling by satisfaction of spatial restraints. J.Mol.Biol., 234, 779-815.
  • Sippl, M.J. (1990). Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J Mol Biol., 213, 859-83.
  • Sowdhamini, R. & T.L.Blundell (1995). Automatic identification and analysis of domains in proteins of known crystal structure. Prot. Sci., 4, 506-520.
  • Sowdhamini, R., Rufino, S.D. & Blundell, T.L. (1996). A database of globular protein structural domains: Clustering of representative family members into similar folds. Folding & Design, 1, 209-220.
  • Sowdhamini, R., Burke, D.F., Huang, J., Mizuguchi, K., Nagarajaram, H.A., N. Srinivasan, Steward, R.E. and Blundell, T.L. (1998). CAMPASS: A database of structurally aligned protein superfamilies. Structure, 6, 1087-1094.
  • Sternberg, M.J., Bates, P.A., Kelley, L.A., MacCallum, R.M. (1999). Progress in protein structure prediction: assessment of CASP3. Curr. Opin. Struc. Biol., 9, 368-373.
  • Swindells, M.B., Orengo, C.A.., Jones, D.T., Hutchinson, E.G. and Thornton, J.M. (1998). Contemporary approaches to protein structure classification. Bioessays, 20, 884-891.
  • Teichmann, S.A., Park, J., Chothia, C. (1998).Structural assignments to the Mycoplasma genitalium proteins show extensive gene duplications and domain rearrangements. Proc. Natl. Acad. Sci. (USA), 95, 14658-14663.
  • Teichmann SA, Chothia C, Gerstein M. (1999). Advances in structural genomics. Curr. Opin. Struct. Biol., 9, 390-399.
  • Teichmann SA, Chothia C, Church GM, Park J. (2000). Fast assignment of protein structures to sequences using the intermediate sequence library PDB-ISL. Bioinformatics, 16, 117-24.
  • Wetlaufer, D.B. (1973) . Nucleation, rapid folding, and globular intrachain regions in proteins. Proc. Natl. Acad. Sci, 70, 697-701.
  • Wodak, S.J. and Janin, J. (1981). Location of structural domains in protein. Biochemistry, 20, 6544-52.
  • Wolf ,Y.I., Brenner, S.E., Bash, P.A. and Koonin, E. (1999). Distribution of protein folds in the three superkingdoms of life. Genome Res., 9, 17-26.