RStrucFam: a web server to associate structure and cognate RNA for RNA-binding proteins from sequence information.
Title | RStrucFam: a web server to associate structure and cognate RNA for RNA-binding proteins from sequence information. |
Publication Type | Journal Article |
Year of Publication | 2016 |
Authors | Ghosh P, Mathew OK, Sowdhamini R |
Journal | BMC Bioinformatics |
Volume | 17 |
Issue | 1 |
Pagination | 411 |
Date Published | 2016 Oct 7 |
ISSN | 1471-2105 |
Abstract | BACKGROUND: RNA-binding proteins (RBPs) interact with their cognate RNA(s) to form large biomolecular assemblies. They are versatile in their functionality and are involved in a myriad of processes inside the cell. RBPs with similar structural features and common biological functions are grouped together into families and superfamilies. It will be useful to obtain an early understanding and association of RNA-binding property of sequences of gene products. Here, we report a web server, RStrucFam, to predict the structure, type of cognate RNA(s) and function(s) of proteins, where possible, from mere sequence information. RESULTS: The web server employs Hidden Markov Model scan (hmmscan) to enable association to a back-end database of structural and sequence families. The database (HMMRBP) comprises of 437 HMMs of RBP families of known structure that have been generated using structure-based sequence alignments and 746 sequence-centric RBP family HMMs. The input protein sequence is associated with structural or sequence domain families, if structure or sequence signatures exist. In case of association of the protein with a family of known structures, output features like, multiple structure-based sequence alignment (MSSA) of the query with all others members of that family is provided. Further, cognate RNA partner(s) for that protein, Gene Ontology (GO) annotations, if any and a homology model of the protein can be obtained. The users can also browse through the database for details pertaining to each family, protein or RNA and their related information based on keyword search or RNA motif search. CONCLUSIONS: RStrucFam is a web server that exploits structurally conserved features of RBPs, derived from known family members and imprinted in mathematical profiles, to predict putative RBPs from sequence information. Proteins that fail to associate with such structure-centric families are further queried against the sequence-centric RBP family HMMs in the HMMRBP database. Further, all other essential information pertaining to an RBP, like overall function annotations, are provided. The web server can be accessed at the following link: http://caps.ncbs.res.in/rstrucfam . |
DOI | 10.1186/s12859-016-1289-x |
Alternate Journal | BMC Bioinformatics |
PubMed ID | 27717309 |